|
||
![]() |
|
|
In 2010 the cross-directorate Exploration Scenarios Working Group carried out a survey of space technology that could be used across different application domains, including the Space Exploration (robotic or not) one. Besides other important technologies, Robotic docking and refuelling were identified. In the exploration application domain, Robotic docking and refuelling technologies are essential if space elements, launched by separate means, need to be assembled and refuelled in space. Furthermore when RDV and refuelling technologies are developed and validated for a suitable orbit (i.e. GEO), these could be made available to commercial GEO communication satellites servicing. While there is still not much belief in civilian satellite servicing and refuelling, operators are puzzled by the fact that the technology is being readied in the military space sector. There is definitely the prospect that satcom satellite servicing may become reality within a decade. In the process of acquiring new spacecraft, which when commissioned will last over 15 years, operators are considering the opportunity to future-proof their new assets. Refuelling provision on a satcom spacecraft are possibly the cheapest and less problematic of all servicing provisions. Hence these constitute an affordable way to protect assets acquired now for a changing future in which satellite servicing may have become mainstream. To have any chance to be used in a future, these refuelling provisions need to be standardised across the industry. Therefore with this activity ESA intends, together with the European satellite producers (which manufacture commercial but also institutional satellites) to conceive and promote standard refuelling provisions that can be installed in present European satellite platforms. The proposed activity intends to: 1) Perform a conceptual design of the provisions 2) Architectural definition 3) Breadboard design 4) Functional testing 5) And possibly filing to a standardisation body of the above concept to achieve the status of recognised standard. NTUA-CSL is subcontractor in the project. |
|
||
![]() |
|
|
A cooperation program between ESA and NTUA which provides the opportunity to two NTUA students to work at ESA/ESTEC, under joint supervision from ESA and NTUA/ CSL. The goal of the program is to propose and develop mechatronic innovations for space robotics (orbital systems and rovers) to be used as part of ESA's educational platforms. |
|
||
![]() |
|
|
Offshore wind and tidal energy generation is becoming an increasingly important component of the world’s energy mix. Continued strong growth is predicted. However, a growing problem is manifesting itself within the industry. The submarine cables that are an essential infrastructural component of offshore energy now account for 80% of insurance claims related offshore renewables. Unfortunately, current practice is to simply lay these cables on top of the seabed without burial or protection, as the traditional tracked trenching machines originally developed for deep sea oil and gas applications are inadequate for the harsh coastal terrain. Cables are therefore exposed to numerous risks such as tidal forces, rock abrasion, snagging from fishing nets etc. Existing technologies cannot address this growing problem. HexaTerra will develop a novel solution to the problem that builds upon recent advances made in ‘stepping’ locomotion systems for traversing undulated harsh terrain. Using this solution the project expects to comprehensively address the problem of damage to subsea energy cables, thereby maximising offshore energy reliability, maintain renewable energy affordability, & minimise the marine environmental impact of cables. |
|
||
![]() |
|
|
This research program aims at advancing the state of the art in legged locomotion and more specifically in efficient and agile quadruped locomotion through the development of novel designs and control methods. The need for efficient and agile legged systems stems from the possibilities they open in traversing off road terrains quickly, in emergency tasks, in detecting forest fires, or in space exploration, to name a few. To this end, such systems must move efficiently and robustly, at higher speeds that are now available, and through changing environments. This research work will address these needs both theoretically, with the development of new tools and algorithms, and experimentally, with the design and development of a new highly articulated, variable compliance quadruped robot. Therefore, it is expected that it will contribute to the science of nonlinear dynamics and control, as well as to the design and development of novel legged robotic and mechatronic systems. |
|
||
![]() |
|
|
Although legged robots have the potential to outperform wheeled machines in rough environments, they are subject to complex motion planing and control challenges and to balance-in-motion constraints. The aim of this research program is the integration of such capabilities into autonomous and dependable legged robotic systems through the development of novel designs and control methods, with emphasis on efficient locomotion. To reach our goals, our teams working with humans, animals, legged robots, crawlers and humanoids will cooperate employing an interdisciplinary approach. The expected results include: (a) an autonomous quadruped robot with multi-jointed legs and articulated body that can achieve fast and stable gaits through uneven terrains, (b) a multi-legged robot with flexible elements capable of robust locomotion through uneven terrains with its body in full ground contact, (c) the development of control algorithms for humanoids employing upper and lower limb coordination for stable gaits through uneven terrains, (d) a comprehensive study of the control and stability methods of humans and animals during locomotion through uneven terrains. |
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
||
|
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
Initial development stages of the NTUA 2D Space Robotics Emulator. |
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
||
|
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
||
![]() |
|
|
||
|
|