Dynamics, Control and Design of Multi-joint, Variable Compliance, Quadruped Robots – Laelaps

Funded by: National Strategic Reference Framework

This research program aims at advancing the state of the art in legged locomotion and more specifically in efficient and agile quadruped locomotion through the development of novel designs and control methods. The need for efficient and agile legged systems stems from the possibilities they open in traversing off road terrains quickly, in emergency tasks, in detecting forest fires, or in space exploration, to name a few. To this end, such systems must move efficiently and robustly, at higher speeds that are now available, and through changing environments. This research work will address these needs both theoretically, with the development of new tools and algorithms, and experimentally, with the design and development of a new highly articulated, variable compliance quadruped robot. Therefore, it is expected that it will contribute to the science of nonlinear dynamics and control, as well as to the design and development of novel legged robotic and mechatronic systems.